Power MOSFET

60 V, 155 m Ω , Single N-Channel Logic Level, SOT-23

Features

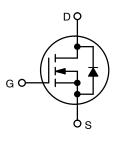
- Small Footprint Industry Standard Surface Mount SOT-23 Package
- Low R_{DS(on)} for Low Conduction Losses and Improved Efficiency
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage	V _{GS}	±20	V		
Continuous Drain	Steady	T _A = 25°C	I _D	2.2	Α
Current R _{ΨJ-mb} (Notes 1, 2, 3, and 4)	State	T _A = 100°C		1.6	
Power Dissipation		T _A = 25°C	P _D	1.5	W
R _{ΨJ-mb} (Notes 1 and 3)		T _A = 100°C		0.6	
Continuous Drain	Steady State	T _A = 25°C	I _D	1.7	Α
Current R _{0JA} (Note 1, 2, 3, and 4)	State	T _A = 100°C		1.2	
Power Dissipation R _{θJA}		T _A = 25°C	P_{D}	0.9	W
(Notes 1 and 3)		T _A = 100°C		0.4	
Pulsed Drain Current		= 25°C, = 10 μs	I _{DM}	27	Α
Operating Junction and S	T _J , T _{stg}	–55 to 150	°C		
Source Current (Body Die	Is	1.9	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

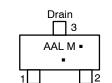
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm2, 2 oz. Cu pad.
- 4. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
60 V	155 m Ω @ 10 V	2.2 A	
33 1	205 mΩ @ 4.5 V	/ .	

N-Channel

SOT-23 CASE 318 STYLE 21

Source

MARKING DIAGRAM/ PIN ASSIGNMENT

AAL = Device Code

M = Date Code*

■ Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NVR5198NLT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
NVR5198NLT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter		Max	Unit
Junction-to-Lead #3 - Drain (Notes 2 and 3)		86	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	139	°C/W

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μA		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°C, I_D = 250 μA			70		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS} = 60 \text{ V}$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	GS = ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)	•			•	•	•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$,	I _D = 250 μA	1.5		2.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25	i°C, I _D = 250 μA		-6.5		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10	V _{GS} = 10 V, I _D = 1 A		107	155	mΩ
		V _{GS} = 4.5	V _{GS} = 4.5 V, I _D = 1 A		142	205	1
Forward Transconductance	9 _{FS}	V _{DS} = 5.0	V, I _D = 1 A		3		S
CHARGES, CAPACITANCES & GATE	RESISTANCE	:				1	I
Input Capacitance	C _{iss}				182		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, \text{ f}$	= 1.0 MHz,		25		1
Reverse Transfer Capacitance	C _{rss}	V _{DS} = 25 V			16		1
Total Gate Charge	Q _{G(TOT)}	V _{DS} = 48 V,	V _{GS} = 4.5 V		2.8		nC
	,	$I_D = 1 A$	V _{GS} = 10 V		5.1		
Threshold Gate Charge	Q _{G(TH)}				0.3		1
Gate-to-Source Charge	Q _{GS}	V _{DS} = 48	V I _D = 1 Δ		0.8		1
Gate-to-Drain Charge	Q_{GD}	V _{GS} =	10 V		1.5		1
Plateau Voltage	V_{GP}				3.1		V
Gate Resistance	R_{G}				8		Ω
SWITCHING CHARACTERISTICS (No	ote 6)					1	ı
Turn-On Delay Time	t _{d(on)}				5		ns
Rise Time	t _r	Vpo - 30 V	Voc - 10 V		7		1
Turn-Off Delay Time	t _{d(off)}	$V_{DS} = 30 \text{ V, } V_{GS} = 10 \text{ V,}$ $I_{D} = 1 \text{ A, } R_{G} = 10 \Omega$			13		1
Fall Time	t _f				2		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS			1			1
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.8	1.2	V
- -		I _S = 1 A	T _J = 125°C		0.6		1
Reverse Recovery Time	t _{rr}	1 .,			12		ns
Charge Time	t _a	$I_{S} = 1 A_{dc}, V_{GS} = 0 V_{dc},$ $dI_{S}/dt = 100 A/\mu s$			9		1
Discharge Time	t _b				3		1
Reverse Recovery Stored Charge	Q _{RR}			<u> </u>	6		nC

^{5.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{6.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

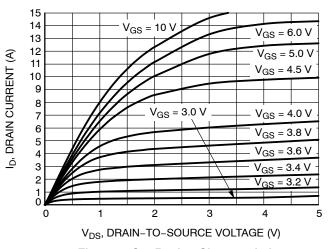


Figure 1. On-Region Characteristics

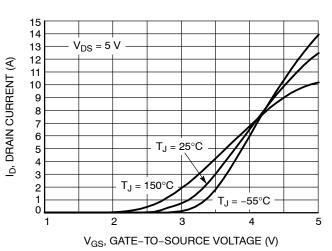


Figure 2. Transfer Characteristics

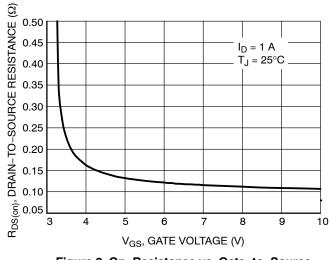


Figure 3. On-Resistance vs. Gate-to-Source Voltage

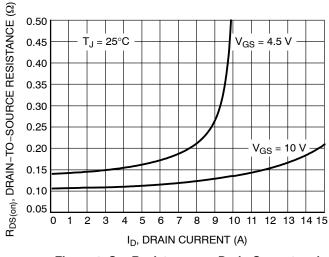


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

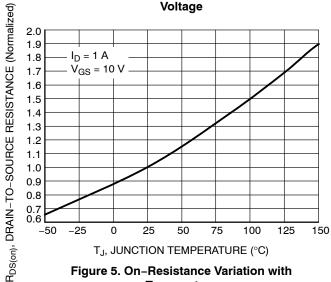


Figure 5. On-Resistance Variation with **Temperature**

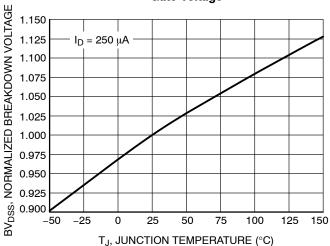


Figure 6. Breakdown Voltage Variation with **Temperature**

TYPICAL CHARACTERISTICS

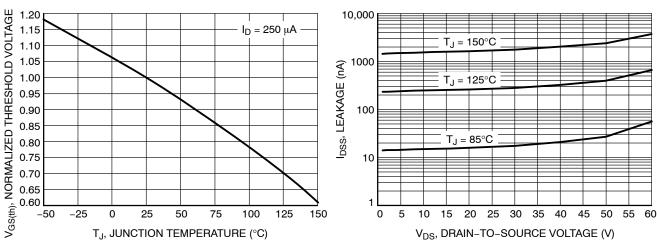


Figure 7. Threshold Voltage Variation with Temperature

Figure 8. Drain-to-Source Leakage Current vs. Voltage

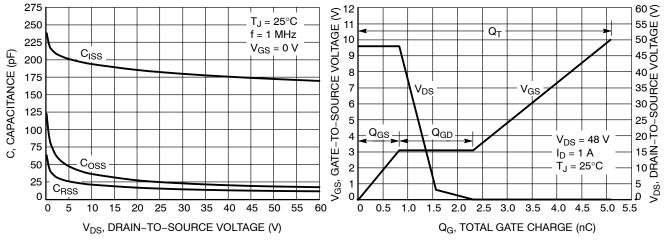


Figure 9. Capacitance Variation

Figure 10. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

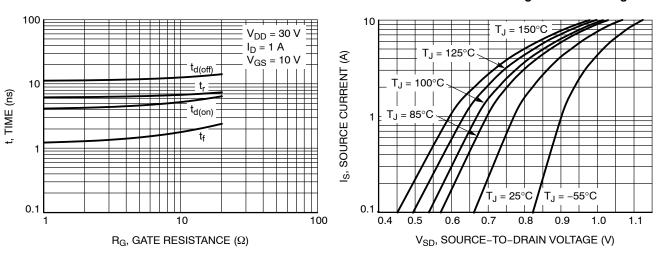


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

Figure 12. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

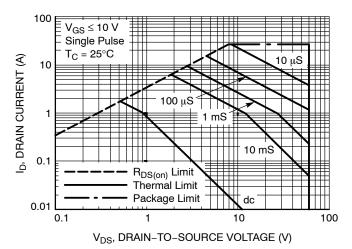


Figure 13. Maximum Rated Forward Biased

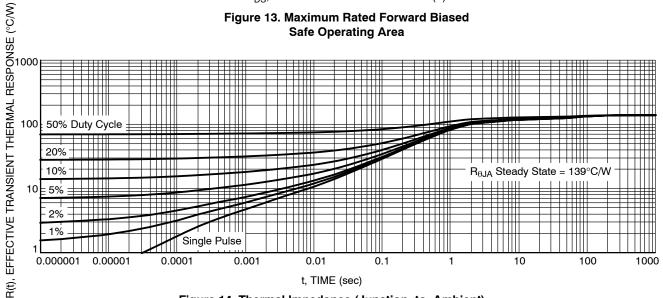
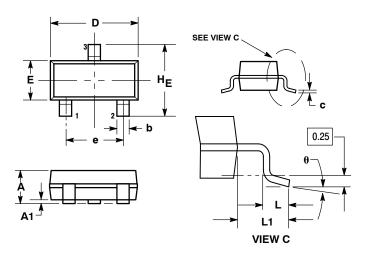



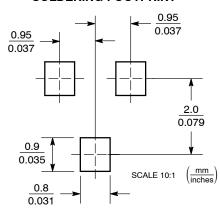
Figure 14. Thermal Impedance (Junction-to-Ambient)

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AP**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	
θ	0°		10°	0°		10°	

STYLE 21: PIN 1. GATE SOURCE 3 DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC wors the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implications the polar or other applications intended to surgical implication in which the failure of the SCILLC products could create a situation where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative